
~ Pergamon 
www.elsevier.com/locate/j appmathmech 

g Appl. MathsMechs, Vol. 63, No. 2, pp. 327-332, 1999 
© 1999 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
PII: S0021-892g(99)00043-X 0021-8928/99/S--see front matter 

A VARIATIONAL METHOD OF DERIVING 
THE EQUATIONS OF THE NON-LINEAR 

MECHANICS OF LIQUID CRYSTALSt 

V. B. L IS IN  and A. I. P O T A P O V  

Nizhnii Novgorod 

(Received 20 April 1998) 

The non-linear equations of the dynamics of liquid crystals [1], derived previously by the Poisson brackets method, are derived 
from the Hamilton-Ostrogradskii variational principle. The variational problem of an unconditional extremum of the action 
functional in Lagrange variables is investigated. The difference between the volume densities of the kinetic and free energy of 
the liquid crystal is used as the Lagrangian. It is shown that the variational equations obtained are equivalent to the differential 
laws of conservation of momentum and the kinetic moment of the liquid crystal in Euler variables, while the Ericksen stress 
tensor and the molecular field are defined in terms of the derivatives of the free energy. © 1999 Elsevier Science Ltd. All rights 
reserved. 

A liquid crystal is a fluid medium in which, unlike classical liquids, there is an additional hydrodynamic var iable--  
the director field, which describes the orientational motions of stretched particles [2]. The equations of the non- 
linear dynamics of liquid crystals were derived in [1] by the Poisson brackets method, which are well known in 
problems of superfluidity. However, it is fairly complex and length in the theory of liquid crystals compared with 
the variational method employed below, the use of which is well known in the case of classical liquids [3, 4]. 

1. T H E  K I N E M A T I C  A N D  E N E R G Y  C H A R A C T E R I S T I C S  

The dynamic state of a nematic liquid crystal as a continuous medium is described by a specified velocity field 
v(x, t), a density field p(x, t) and a pressure field p(x, t), and also by the field of the directions of the particles of 
the medium n(x, t) (the director field) [5, 6]. For a variational derivation of the equations of the dynamics of a 
nematic liquid crystal it is necessary to obtain an expression for the Lagrangian of a physically infinitesimal element 
of the medium. In continuum mechanics, the Lagrangian has an energy meaning and is chosen to be equal to the 
difference between the kinetic energy density and the internal or free energy density, depending on the nature of 
the processes being investigated. 

In the case considered here, the volume density of the kinetic energy is 

K=pv2/2+P J(02/2, t°s =(nxdn/dt)s  =eski nsh* (1.1) 

The first term on the right-hand side of the first relation of (1.1) describes the kinetic energy, related to the 
translational motion of the centre of mass of a physically infinitesimal volume, while the second term describes 
the energy related to the rotation of the molecules about the centre of mass, J is the geometrical moment of inertia, 
to is the angular velocity of rotation of the director and esk/are the components of the Levi--Civita pseudotensor. 
Here we have also taken into account the fact that the vector n has unit length, and all the changes of the director 
are related to its rotation in space. 

In the simplest case for a nematic liquid crystal the free energy has the form [2] 

p F =  pFo (p)+ 1 Kl (divn)2 + 1 K2(n" rot n)2 + 1 K3(n x rot n )2-8-~  Ae(n. E) 2 _ 1  Ax(n" H) 2 (1.2) 

Here Ki are Frank constants, and Ae and AZ are the dielectric and diamagnetic anisotropy. In the mechanics of 
liquid crystals, the free energy plays a role similar to that of the elastic deformation energy of a solid and gives it 
some similarities with the theory of elasticity. The first term on the right-hand side of (1.2) describes the 
hydrodynamic part of the free energy, in terms of which the pressure in the mediump = p2(OF/Op) is expressed, 
the second and third terms are related to the director field gradient, while the last two describe the interaction 
between the electric field E and magnetic field H and the director field n. They are responsible for the change in 
the orientation of the director due to the action of the electric and magnetic fields. The three combinations with 
coefficients K i which occur in (1.2), are independent of one another; each of them can be non-zero when the other 
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two are equal to zero. Deformations in which only one of the quantities div n, (n • rot n) or n x rot n are non-zero 
are called transverse bending, torsion or longitudinal bending respectively. Corresponding to this, K1 is sometimes 
called the modulus of elasticity of transverse bending, K2 is called the torsion modulus, while K s is called the 
longitudinal bending modulus. The volume density of the Lagrange function in Euler variables is 

L(p, v, n#¢, nk, i, tO) = p{v 2 / 2 + Jto 2 / 2 - F(p, n k, nk,i, E, H )  ) (1.3) 

Here and henceforth the subscript after the comma denotes a derivative with respect to the corresponding coordinate 
(for example, n~, i = ank/Oxi). 

2. T H E  V A R I A T I O N A L  E Q U A T I O N S  

There are two equivalent approaches to the variational derivation of the equations of continuum dynamics [3-5]: 
either one can consider the variational problem on a conditional extremum for the action functional, written in 
Euler variables, or one can investigate the variational problem on an unconditional extremum of the action 
functional, written in Lagrange variables. 

In the first approach, one needs to know additional relations imposed on the field variables. These relations, in 
the case of media with an internal structure, such as liquid crystals, are not known in advance. 

In the second approach, which is used in the present paper, all the field variables occurring in (1.3) must be 
expressed in terms of independent Lagrange variables, which are the coordinates of the centre of mass of the particles 
~ ( x i ,  t) and their orientations na(xi, t), ct = 1, 2, 3. Here and henceforth Latin subscripts denote Euler coordinates, 
while Greek subscripts denote Lagrange coordinates. 

The Euler velocity field can be expressed in terms of the Lagrange coordinates ~, and their derivatives from 
the condition for the conservation of the Lagrange coordinates of a particle d~ddt  = a~,a/at + vj~lct/axj = O. Hence, 
we obtain that 

Oxj ~ (2.1) 
v j =  0 ~  at 

From the equation of continuity of the medium in Lagrange variables we obtain 

p[xi(~a), t] = p0(~a)det II ~,a.i I I / d e t  II ~O,i II (2.2) 

where p is the density while ~ are the Lagrange coordinates of the medium at the initial instant of time. Hence, 
expressing the field quantities p, v, to using relations (2.1) and (2.2), we obtain the Lagrangian (1.3) as a function 
of the independent variables ~ ,  nk and their derivatives 

L =  L(~ot. j ,  ~a,t, nk, hk, nk,j) (2.3) 

(~ct,t = a~ct I at, h k = dn k I dt = ante I {gt + v janl¢ I ax j ) 

The subscript t after the comma denotes the partial derivative with respect to time of the function for fixed 
Euler coordinates xi, while a dot denotes a derivative with respect to time for fixed Lagrangian coordinates 

It follows from the Hamilton-Ostrogradskii variational principle in Lagrange variables that the motion of a 
continuous medium corresponds to an unconditional extremum of the action functional 

tl 

#[~ct, n t ]=  J J L(~a.i ,  ~ , , ,  n k, h k, nt~,j)dVdt (2.4) 
10 V 

The integration is carried out over the time-varying volume V = V(t),  occupied by the same particles of the medium 
which cannot cross its boundary. 

By varying functional (2.4) with respect to the independent variables ~ and nk for constant Euler coordinates 
xj (see the Appendix) and using Green's formula for separating the variation with respect to the volume V(t) and 
its surface E = E(t), we obtain 

', [[  a ( a ,  a ¢ o/. a ¢ aL {9 ¢ {gL 
r,, t j+ r,, ix,.<, + 

{9 aL d 0L {)L 

+~--'~"k'~k''Vm'SXS'"_l L,:mk {gx.it{gn,.S J dtt.a,ikJ an~ "J J 
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,, srr  3(o< + J f V jnk,iXi,ot V . -- - -  ,,, I,a :,i a,i  ' 

r( aL aL~ aL _ ] } 
+ / / ~ + - - / V j - - ~ U ~  ~)xtlk ~-.dt+ 

LLan,,s ah, .J ahk 

:: 

°' /}  alik Xi,lxnk, i C~. ~x~a + 

=0  (2.5) 

Here vs. are the components of the normal to the surface Y. while Cx is the normal velocity of points of the surface E(t). 
Assuming that the variations lix~ and 8xn k vanish on the surface of the volume, and that the constants of the 

system at the beginning t = to and at the end t = tl of the motion are known, we obtain that the second and third 
integrals in (2.5) are zero, while the first integral reduces to the variational equations 

a ¢ aL "~ a ¢ aZ ~ ( a  ( aZ ~t a ¢ aZ + aZ Vmjnkm axj 

7 t  ~-g~-k j ~-$<-7.j t ~-Z--~.s ) -  ~---~-,<: - a,~,~ v.,.., 

The first of these describes translational motions in the liquid crystal while the second describes the dynamics of 
the director. 

From the variation of the action integral (2,5) one can also obtain the boundary conditions on the surface of 
the volume occupied by the liquid crystal. To do this we need to assume that the variations ~x~ and 8xnk are not 
zero on the surface E, and Eqs (2.6) and (2.7) hold and, moreover, the conditions of impermeability of the boundary 
E: Cx = 0 are satisfied. Then, from the condition for the first and third integrals in (2.5) to vanish we obtain the 
natural boundary conditions 

aL I aL as., vs -~-~-~-O~:[ =0, m y .  = 0 (2.8) 
i~<<'s z a""<'s slz 

3. T H E  E Q U I V A L E N C E  O F  T H E  V A R I A T I O N A L  E Q U A T I O N S  
T O  T H E  L O C A L  C O N S E R V A T I O N  L A W S  

We will return, in Eq. (2.6), to the hydrodynamic variables O, ~,P using the conversion formulae (2.1) and (2.2) (see 
the Appendix). As a result, we obtain from (2.6) the law of conservation of momentum of the nematic liquid crystal 

a a , ( a(pF) n • ~-t (pvi)+ ~-~-f[PViVj -Oij ]= 0, O~ = -L  pSo + ~--'~k,] #<'t) (3.1) 

2 Here oe,j are the components of the Ericksen stress tensor [2, 5],p = p (aF/ap) is the hydrodynamic pressure while 
(a(DF)lOnk, j)nk, i is the contribution of the microrotations of the particles in the stress field of the liquid crystal. 
Ignoring the last term in the Ericksen tensor, expression (3.1) is identical with the law of conservation of momentum 
of an ideal fluid. 

After a similar procedure of changing to hydrodynamic variables, we obtain from (2.7) the following differential 
form of the equation of the balance of angular momentum 

a a 
~'f( JDo)i ) + ~x j ( JDo) io) j ) = Eskirlshk , hk OOF ~ ( apF ] 

= an---k axj Lank,j ) (3.2) 

where hg is the so-called molecular field, characterizing the presence of the momenta of the inertial forces in the 
nematic liquid crystal. 

It should be noted that, on the left-hand side of (3.2) there is only the kinetic moment related to the rotation 
of the director n. The term related to the kinetic moment of an ideal fluid pr x v remains unchanged and does not 
occur in (3.2). 
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We can change from the laws of variation of the momentum and angular momentum to the equations of motion 
of the nematic liquid crystal in Euler variables 

aViat +vjaviaxj = pl a~TJax~ ' aPat ~ a-~-j (pvj)=0 

.(atoi ato i ") 
(3.3) 

closing them by the equation of state of the liquid (the Tait equation) 

p = p,[(p/po) r - 11 (3.4) 

wherep, is the internal pressure in the liquid, P0 is the density of the unperturbed medium while F is a non-linear 
parameter. They are known in this form as the hydrodynamic equations of liquid crystals [2, 6]. 

4. I N T E R A C T I O N  B E T W E E N  T H E  H Y D R O D Y N A M I C  F I E L D S  
A N D  T H E  W A V E  D I R E C T O R  

As an example, we will derive the equations which describe the propagation of a one-dimensional torsional wave 
of orientation in a nematic liquid crystal, which is in a constant magnetic field H = {0, H0, 0}. 

Suppose the director depends on one spatial coordinate xl -- x and can rotate .in the (x2, x3) plane, i.e. 
n(x, t) = {0, n2(x , t), n3(x , t)} (see Fig. 1), while the velocity field has the form v = (x, t), 0, 0}. If we introduce the 
angle 0(x, t) between the direction of the director n and the magnetic field H0, we obtain n2 = cos O, n3 = sin O, 
and the angular velocity of the director has a single component, directed along the x axis to(x, t) = dOIdt. The volume 
density of the free energy (1.2) is 

K 2 ao 2 AX 2 2 
pF=pFo(P)+---~(n3~x) ---~--H~ cos O 

where PFo(p) = p.(F - 1)(p/po) r + 1] is the hydrodynamic part of the free energy. The non-zero components of 
the Ericksen stress tensor 0~1 and the components of the molecular field h2, 3 have the form 

K/ao/  a 
O'~I=P+ Lax. } ' h2 = AxH2 c°sO+ K2 ~x2 C°SO" h3=K2a-~s inO 

Substituting the expressions obtained into (3.3) and (3.4), we obtain tiae equations of motion of the nematic liquid crystal 

av av= l a p = K 2 a ( a ( p ~  2 ap+ a . .  
pax 4paxta )' Tt  tp,,j=o (4.1) 

j d2(p ,/ a2q~+AXHo2sinq~= 0 (4.2) 

where we have put (p = 20. Equation (4.2) describes a torsional wave of the director of the nematic liquid crystal 
[7] and, when the medium is incompressible (p = P0), is identical to the well-known sine-Gordon equation. If the 

, ,2 2 kinetic energy of the director is negligibly small compared with its potential energy (i.e. Jp(atplat) ,~ p(atp/ax) , 
v = 0), we can neglect the first term in (4.2), and it will describe the quasi-static process of  orientation of the director 
in a magnetic field, which is known as a Fredericks transition [2]. 
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5. A P P E N D I X  

The relation between variations in the Lagrange and Euler variables. The value of the variation, calculated for 
constant Euler coordinates 

8xf(x,t)=(af(x, t, e)/&z)e=o,x=con.~tde (5.1) 

is related to the variation 5~f(x, t), calculated for constant Lagrange coordinates ~ ,  as follows: 

= (af[xi(~a, t, e), t, E]/ae))~=0,~=cons t de = ~xf+~xi~x  i 5[f(x,t) (5.2) 

where 8¢c i is the Lagrangian of the variation of the Euler coordinate. The identity 8~(xi, t) = ~ + ~ o ~  i ~ 0 
and the equality 8~x i = --Oxi/3~Sx~ follow from definition (5.2). 

The Euler variation ~ permutes with the partial derivatives in Euler variables 8/ari and 3/3t, but does not commute 
with the derivatives ~/3~t and d/dt in the Lagrange system of coordinates. Formulae relating the Euler variations 
of the derivatives 8x(d/dt) and 8x(a/8~a) to the operators 8x(d/dt) and 8x(~/~t) follow from definition (5.2) and, 
taking the above identity and equality into account, can be written in the form 

d d d Of ~ af 
k a t :  k a t  : at ~, ' dX  i J OX i K. at 1 '  

a a af a af (Sx-~a ) f  =('~aa SX)f --~aa (xi,~ ~xi SX~fj)+~xi ( ~ a  )xi,flSx~ ~ (5.4) 

The momentum transfer equation. We now consider Eq. (2.6) with components of the non-degenerate matrix 
~ ,  i = (8~/0xi) and further add and subtract the following quantity from the expression obtained 

aL 3L ~ aL /) . 
a n  k nk, i d bnk.  j ~x  i 

After grouping terms we have 

aL a aL a aL a aL a 
~a, j  8x i (~a,j )4 (~at)+"q---'g--'(nk)+~'"--g'--(nk i) + ~a,t axi ' ant oxi onk.j oXi ' 

at. a . ~ ( ~t. ~ a (  ~.  ~ a ( ~L 

. . . .  "2"7"-. --'~'7-'. V m m 3., ' "k'i=O ( 5 . 5 )  

The first six terms form a partial derivative with respect to the coordinate xi of the Lagrangian L = L[~.~ i(xi, t), 
t, nk(xi, t), nk, nkd], while the expression in square brackets, by (2.7), is identically equal to zero, and hence from 

(5.5) we obtain the divergent form of the conservation law 

(5.6) 

Using the expression for the Lagrangian (1.3) and also relations (2.1) and (2.2), which relate the velocity and density 
fields to the derivatives of the Lagrangian variables, we obtain that 

8L 
~¢t , t  ~a.i = -pvi  

3L OL _ p2 OF 3(pF) 
~nk, ] , = -Pvivj  ~pSi] ~nk.) , 

substituting these inequalities into (5.6) we obtain the law of  conservation of momentum (3.1). 
The kinetic moment balance equation. We now consider Eq. (2.7) with non-degenerate matrix estins and further 

using relations (2.1), (2.2) and (1.3) we change to Euler variables in the following expressions 
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~)L /)(pF) ~ . n OL 
~n k Eski ns = ~ n  k slci .~, = PJOJiV m m ~ k  Vm,m Eski ns 

3xj ~ ~nk,j J ' 

"~/L ~"~'~'k J Eski n~,. =OJ(oi-t-pJ~ i 

Here we have taken into account the fact that eijketmk = (SitSjm - ~imSjl) a n d  t~ i = es~ensn k. After this the expression 
obtained is the balance equation (3.2). 
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